
The dependence of 

[ ( m ~ - - m ) / N m l t / a ~ - g L n +  ~ = ~(n) 

on n is given in Table i. With n = i (Newtonian solvent) 

l (ma -- m ) / N m l l i a L  ~ = (3/2)~t, 

which coincides with the results of [2]. 
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HEAT TRANSFER WITH THE FLOW OF STRUCTURALLY VISCOUS MEDIA IN TUBES AND CHANNELS 

T. Negmatov and P. V. Tsoi UDC 536.25 

In various branches of modern technology, wide use is made of so-called structurally 
viscous media, which, in their physical properties, differ considerably from ordinary Newto- 
nian liquids. Structurally viscous media include high-polymer, colloidal, bulk, coarsely 
dispersed, and other systems, for which the Newton hypothesis of a linear dependence between 
the rate of deformation and th~ stress no longer holds. A nonlinear dependence between the 
stress and the gradient of the rate of flow is the most characteristic special feature of 
non-Newtonian liquids [I]; this dependence is frequently expressed by the Ostwald formula 

T = k(dw/dr) ~.  ( 1 )  

For a laminar, hydrodynamically stabilized flow of anomalous liquids with an exponen- 
tial rheological law (i), the field of the velocities in a round tube and a plane-parallel 
channel is expressed by the formula 
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w(~)/<w> = {[(2 + r )m  + l ] / (m + I )}[ t  --~(~+~)/~], (2) 

whe re  r = 0 ,  5 = ( y / h ) s i ~  y;  - - h ~ y ~ h  f o r  a s l i t - t y p e  c h a n n e l ;  F = 1; 0 ~ = r / R ~ l  
for a round t~e; and <w> =Wav is the average velocity over a cross section of the flow of 
liquid. 

We assume that the outer surface of the tube (channel) is washed by a medium with a tem- 
perature Tme d = ~ (X) and that heat transfer with the external medium takes place in accor- 
dance with Newton's law. The semibounded tube has a preceding connected hydrodynamic stabil~ 
zation section; ~he liquid with a temperature of To enters the active zone of the tube with 
a fully developed stabilized velocity (2). Then, for a thermally thin t~e (channel), deter- 
mination of the temperature field in a flow of non-Newtonian liquid, with the generally~own 
assumptions, reduces to solution of the following boundary-value problem [2]: 

.-~t ~ ( rOT)  q(~,X) R 2 ~  {[(2+ F ) m +  l] /(m+ l)}[i--~(~+~)/~]OT/OX = r " ~ ~-  ~L ' (3) 

r (~, X)ix..<o = To, {Or/O~ = Bi[~(X) --T(~ , x ) l h = .  (4) 

where 

X = (x/B).t/Pe, Pe = z%vB/a, Bi = ~R/~ L 0 ~ x < ~ ;  

XL and a a r e  t h e  c o e f f i c i e n t s  o f  t h e r m a l  c o n d u c t i v i t y  and t h e r m a l  d i f f u s i v i t y  o f  t h e  l i q u i d ;  
a is the coefficient of heat transfer between the surface of the tube and the external medi- 
um. Thus, the quantity Bi differs from the generally adopted Biot number, introduced in the 
theory of thermal conductivity. 

more exact mathematical model of a theoretical investigation of internal problems of 
convective heat transfer with the flow of a heat-transfer medium in a tube reduces to deter- 
mination of the temperature fields in the flow and over the thickness of the wall of the tube, 
i.e., it reduces to the solution of so-called conjugated problems [3]. Problem (3), (4), as 
a conjugated problem, is stated in the following manner. It is required to find the distri- 
bution of the temperature TI(~, X) over the thickness of the wall of the tube, satisfying the 
equation of thermal conductivity and the boundary conditions (4) at the outer surface, where 
Bi = aR/%; % is the coefficient of thermal conductivity of the wall of the tube. At the 
outer surface, the solution TI(~, X) must satisfy the conditions of conjugation with the tem- 
perature in the flow of liquid T2(~, X); 

[T~ (~, X)h=~+o = IT2 (~, X)]~=~_0, (--)~aT~la~)~=1+o = (-- %LaTJa~)~=~-o. (5) 

Theoretical methods for solving conjugated problems are bound up with surmounting complex 
mathematical transformations, and the solutions known in the literature are expressed by cum- 
bersome functional dependences and are not very suitable for practical calculations. 

In the classical statement of problems of convective heat transfer, formulated by Graetz 
[2], the temperature conditions are usually given at the outer surface of the tube and are limit- 
ed to determination of the temperature field in the flow of liquid. The solutions of such 
problems are suitable for the investigation of heat transfer in tubes with a thermally thin 
wall. 

By the introduction of an unknown function of the temperature distribution ~(X) at the 
liquid --wall interface: 

(T~)r = (T2)r = ~(X) 

the solution of the conjugated problem can be reduced to solution of the Graetz problem in 
the flow of liquid and the problem of thermal conductivity over the thickness of the wall of 
the tube. To find ~ (X), we obtain an integral equation from the second condition of (5). 

Consequently, the representations of the temperature in the flow of liquid T~(~, X) and 
at the wall of the tube TI(~, X) are simple and sufficiently exact expressions which permit 
finding effective solutions of conjugated problems. One such method, proposed in [4], will 
be used for the solution of Eq. (3) with the boundary conditions (4). Obviously, with Bi= ~, 
the problem stated coincides with a generalized problem of the Graetz type. 
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We introduce the Laplace transform 

oo 

T*(~, s) = ~ T(~, X) exp (-- sX)dX; 
0 

then, with respect to the transform T*(~, s), from (3), (4), we obtain 

dT ~ ~ d- q* (~, ~) R~r  - 

{dT*/d~ + Bir*(~, s)h= ~ = Bi~*(s). 

O; (6) 

(7) 

Determination of the exact solution of the boundary-value problem (6), (7) and a transi- 
tion to the region of inverse transforms present certain mathematical difficulties, and the 
final results are expressed by complicated analytical dependences. Therefore, the determina- 
tion of the temperature field in a simple form, even at the price of decreasing its accuracy, 
is of practical importance for engineering thermophysics. 

For the solution of internal problems of convective heat transfer, a rather effective 
method is the orthogonal projection of an unconnected boundary-value problem of the kind (6), 
(7) in a functional space with a finite number of dimensions [4]. 

We postulate that the distribution of the internal sources of heat evolution is stabil- 
ized along the flow of the liquid, i.e., 

lira q(~,X) =lira sq*(~,s) =:q(~). (8) 
X-*oo s-~0 

We seek an approximate  s o l u t i o n  T*(~, s ) ,  s a t i s f y i n g  the  boundary c o n d i t i o n  (7) ,  in  the  fam- 
i l y  o f  a l i n e a r  compos i t ion  o f  :the t ype  

n 

r~ (~, s) ---- ~* (s) + Z a~ (s)~k (~, Bi), (9) 
h = t  

where the coordinate functions ~k(E, Bi) are linearly independent and satisfy the conditions 

{d~k/d~ -t- Bi~k(~, Bi)}r = O. 

The choice of the first coordinate function ~x(~, Bi) depends on the analytical expres- 
sion of the limiting function q(~) in the relationship (8). For example, with q(~) = qv = 
const, solution (9) is brought to the form 

n 
. �9 IBi+2 

T,~(~,s)=q)*(s)+a1(s)~ "B'i ~ + ah(s)( l - ~)k" 
h--2  

In the case q(~) = qv(l -- ~2), including the condition 

q(~, X) = q~(l -- ~2)[l--exp(--PdX)l 

we must take as the first coordinate function for a round tube (F = I) [4] 

~(~, Bi) = 2 4 -- 4~ 2 ~- (3Bi + 4)/Bi. 

With such a choice of the system of coordinate functions, the approximate solution (9) in the 
region of inverse transforms with an increase in X approaches the exact solution. 

The coordinates of the transform ak*(S) are projections of the vector Tn*(~, s) --~*(s) 
on the coordinate axes in a functional space with a finite number of dimensions and are found 
from the requirement of the orthogonality of the residual of equation (6) with T* = Tn* with 
respect to all the coordinate functions ~j (~): 

w (2) ~ + - - f 2 - j  ~ d~. / - [ s T " ( ~ ' s ) - r ~  ,~(~)d~ = 0. (10) 
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System (i0), after integration with respect to ~, is brought to the form 

~{Aj~ + Bi~s } a; (s) = [To sT* (s)l C~ + h=l -- R~XL Dj (s) 
qr 

(] = t , 2 ,  . . . ,  n ) ,  

where 

i 

'* d " r d t~  

(} 

l 

Bjh .... Bn j = ~ w (~) ~jch~rd~ > O, 
0 

Cj = t' w(~)q~(~)~rd~,  9 2 (s) = t q*(~-,s)~J(~)~ rd~" 

(11) 

Determining the coefficients ak*(S) from system (ii), and going over to the region of inverse 
transforms using the formula 

, /~2 
.r IN," Aj,,(.~) . [ s ~ ( X - - a ) ]  da  + ~  D ~ a ' ] ~  jh(s~) . a,, (X) : : : ~ .  T,(a).lT~_ 1 ~-r-(.,.~.) exp 7' ~ 1 ~ ~  exp [si(X-- a)] dot 

�9 t j = l  

in relationship (9), we obtain the solution of the starting problem. Here s i < 0 are the 
simple roots of the equation h(s) = 0; 5(s) = IA + sB 1 is the principal determinant of the 
system; Ajk is its algebraic complement; 

T1 (X) : :  T o - -  sT* (s); D i (X) = D; (s). 

Calculation of the coefficients ak(X) in the third and following approximations (n ~3) 
is carried out effectively using an electronic computer. Here, for simplification, all the 
calculations must be made with fixed values of the rheological parameter m and the Bi number. 
In particular, the relative excess temperature in the flow of liquid inside a round tube 
(F = i) with T (X) = Tme d = const, q($, X) = 0, and m = 1/3 (a pseudoplastic) is brought to 
the form 

n 

0 (~, X. Bi) T (~, X) - -  Treed := ~ Tk (~, Bi) exp [sk (Bi) X]. (12)  
T O -- 2me d h=t 

Curves of the change in the local Nusselt number 

N~ = N(X) = - - 2 ( d 0 / 0 ~ h = / < o > ,  

calculated using solution (12), are given in Fig. i. 

The results of calculation of the temperature in the flow of liquid and the localNusselt 
number for a round tube and a slit-type channel (F = 0; I) with m = i, q = 0, and Bi =~ gave 
good agreement with known investigations of other authors. 

The numerical realization of system (ii) with concrete conditions of singularity permits 
investigating a broad circle of problems of convective heat transfer for anomalous media, tak- 
ing account of given distribution functions of the internal sources of heat evolution, the 
heat of friction, and various laws of the change in the temperature of the external medium. 
We consider below problems of heat transfer in a round tube with a linear rise of the temper- 
ature of the external medium along the flow and an investigation of the temperature field in 
a slit-type channel, due to the dissipation of energy. 
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I n  E q s .  ( 3 ) ,  ( 4 )  we s e t  

F = l ,  q = 0, Tmed=~(X) = T o + A T * X ,  AT* = A T P e R .  

We f i r s t  f i n d  t h e  s o l u t i o n  f a r  f r o m  t h e  i n l e t  t o  t h e  t u b e .  We s e e k  t h e  s t a b i l i z e d  f i e l d  o f  
t h e  t e m p e r a t u r e  i n  t h e  f o r m  

r (~ ,  X,  Bi) = To + AT*X + r , (~ ,  Bi). (13) 

We substitute the value of (13) into Eq. (3). Integrating the equation obtained with zero 
boundary conditions of the third kind, we find T,($, Bi). The relative excess temperature 
far from the inlet to the tube is expressed by the formula 

3m-i- t [(5mi+6m+t) Bi+2 (re+i)(3re+t)  ( m 2 t_  W_ (14 )  ( i 4 )  O ( ~ , X ,  Bi)  - r - r 6  - X  - - ~ 2 / 4 +  
AT* r n + i  [ 4 ( 3 m ~ i )  2Bi - " 

Differentiating with respect to ~, we obtain 

--2(OO/O~)~= 1 = 1, 

i.e., the temperature gradient at the wall with a sufficiently large value of X does not de- 
pend on m and Bi. The minimal Nusselt number, determined using solution (14), has the form 

- -  2(OO/O~)g=l 8 ( 5 m +  1) (3m + i) (m q- l) Bi 
Numin = <O> -- O c =(3irna+43miq-t3m+t) Bi~-4 (m+l)(3mq-t) (5re+l)" 

(15) 

If, in (14), (15), we set m = i and Bi = ~, then, for a normal Newtonian liquid, we obtain 

the known solutions [2]: 

O(~, X) = X - -  (1/8)(3 - -  4~ 2 + ~4), Numin = 4 8 / i i  = 4.364. 

The  c h a n g e  i n  Numi n f o r  B i  -- 1 ,  4 ,  1 0 ,  ~ i s  g i v e n  i n  F i g .  2.  

Preliminary investigations of the temperature field in the stabilized section permit 
constructing solutions for the whole zone of the tube with respect to such a system of 
coordinate functions, with which, for a fixed value of n, we obtain the best approx- 

imation. 

This solution is found in the form 

T :  (~, s, B i ) .  = To/s+AT*/s 2 +a*l (s)[ (5m~q-6m~-i)Biq-2(rnq-i)(3mq-i)(5mq-i)'4 (3m ~- i) Bi 

- - r +  a-a---~ C - a - j  + .=~ " (16) 

On the basis of the cal@ulations made and the properties of a Laplace transform, we find 

h m  sal (s) = l i ra  a 1 (X) - -  
s -~ 0 X--*c~ 

3m + i h m  saa(s) ---- l i r a  a~ (X) ---- 0, k > j  2. 
m n u i ' s~o X - ~  
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Consequently, the approximate solution (16) in the region of inverse transforms with an in- 
crease in the value of X tends toward an exact asymptotic solution (14). 

A realization of solution (16) for a Newtonian liquid (m = i) with boundary conditions 
of the first kind (Bi = ~) is given in [4]. With a finite value of the Bi number, the exact- 
ness of the calculation improves and the error decreases with a decrease in the Bi number. 

A characteristic special feature of the flow of a number of rheological media, for exam- 
ple, molten plastics, is the relatively great value of their effective viscosity. This leads 
co a considerable dissipation of mechanical energy into thermal with the flow of such liquids 
in tubes and channels. 

In Eqs. (3), (4) we set q(~, X)R2/XL = ~/X-(dw/d~) 2, F = 0, Tme d=To =const; then the 
solution of the boundary-value problem (5), (6), with an averaged viscosity coefficient (~ = 
const), is found in the form 

* ~  = * | TrL(~, X. Bi)  Tmed/S@al ( s  ) m ( B i + 2 ) + 2  
�9 [ "~ i3-~ 

2(re+l) ] 

h=2 

For the coefficient a**(s), solving the truncated system (ii) of the first 'order, we obtain 

where 

9 

a~(s)= 2-~L (m=-t)(rn+2).  --  (Ms 
mM1Bi2+M~. Bi 1-1} 

Bi2+M4Bi+M1)(3m+ 4) -{-S , 

Ml(m) = 1440m ~ + 7272m ~ -= t5236m 4 + 16952m 3 + t0564m ~ + 3496m -[- 480; 

Mo(m) = 4(m + t)2(3m - -  4)(3m + 2)(4m + 3)(5m + 4)(6m " 5); 

M3(m) = 384m G + t02~m 5 + 1026m 4 + 462m 3 + 80m~'; 

M4(m) = 1440m 6 + 5592m ~ + 8652m 4 ~ 6680m 3 + 2580m 2 + 40Ore. 

The r e l a t i v e  e x c e s s  t e m p e r a t u r e  i n s i d e  a p l a n e - p a r a l l e l  c h a n n e l ,  i n  t h e  f i r s t  a p p r o x i m a t i o n ,  
i s  e q u a l  t o  

O(~, X, B i ) =  T--T~ (2m + t )~ l - - e x p  - " (17)  
p~W:v/~, L -- 2 (m + t) (m -t- 2) (M 3 Bi 2 + M 4 Bi -t- M1) (3m + 4) m Bi 

�9 [ (M~B~Bi~+(m BiZM1+ M2Bi) X ] Far from the inlet to the tube, where exp -- 4)]~0, expression 

(17) coincides with the exact asymptotic solution. Specifically, with Bi = =, from (17) we 
find 

0 

3 gw~V 
r (~, X) --  T0 + 4 ~L [l  - -  exp ( - -  2 . 6 6 t X ) 1  (1 - -  ~4) 

a n d ,  a s  X ~ ~ ,  i n  t h e  l i m i t  we o b t a i n  t h e  S c h l i c h t i n g  s o l u t i o n  [ 5 ] .  The p r o p o s e d  m e t h o d  d e -  
Carmines without complication the solution with a variable viscosity coefficient, depending 
on ~. 

The method of the combined application of integral transforms in an orthogonal projec- 
tion to internal problems of convective heat transfer can be successfully realized with any 
given analytical expression of the stabilized profile of the velocity w(~). In cases where 
the information on the distribution of the velocity was obtained from experimentaldata or 
by integratinn of the equation of hydrodynamics, the coefficients in system (i!) can be found 
by approximate integration with respect to discrete points. 

The authors of [6] proposed new analytical dependences for the relative velocity of the 
structurally viscous flow of a liquid in a round tube or a flat slit in the form 
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2 0 
(i - ~=) + T -Go ~w (i - ~') w,,(~) = 2 

<w> 40 
1+T-Go *w 

These data permit investigating heat transfer taking account of the new complex eTw/~o~ 

I. 

t 

3. 

4. 

5. 

6. 
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SELF-SIMILAR PROBLEMS OF TURBULENT MIXING AT THE INTERFACE OF COMPRESSIBLE GASES* 

V. E. Neuvazhaev UDC 232.517.4 

INTRODUCTION 

It is well known that the interface of liquids or gases located in a field of gravity 
breaks down if a heavy substance is located above a light one. An analogous picture arises 
in the absence of a gravity field, if the light substance accelerates the heavy one. The 
theory of turbulent mixing and the corresponding self-similar solution for incompressible 
liquids are constructed in [i]. 

For some self-similar problems in gasdynamics there arise conditions leading to turbu- 
lent mixing. In the present work, solutions are constructed taking account of turbulent mix- 
ing. The article discusses the problem of the motion of two originally cold gases, in one of 
which there is given a rising evolution of energy, varying in accordance with a power or ex- 
ponential law. In a self-similar solution at an interface, moving with an acceleration, there 
appears a discontinuity of the density: a shock wave enters the cold gas, leaving behind it 
a high (at the interface, infinite) density, while a rarefaction wave is propagated into the 
energy-evolving gas. The interface is obviously unstable, i.e., the light substance acceler- 
ates the heavy one. For this problem, a solution is constructed taking account of turbulent 
mixing. 

The article considers the motion of a gas under the action of an applied pressure, ris- 
ing either stepwise or exponentially. The surface of the gas, to which the pressure is ap- 
plied, is free. Such a piston can be obtained where, in a vacuum, the pressure is given (for 
example, of light). A free surface is unstable with respect to small perturbations. In dis- 
tinction from known self-similar solutions [2, 3], the solution obtained with turbulent mixing 

*Presented at the Fifth All-Union Seminar on Analytical Methods in Gasdynamics, Makhachkala, 
July, 1974. 
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